|
Contents
4 |. e. r. C9 W* xList of Tables
9 I! Y& o) w* a9 nList of Figures
2 r% C- N3 S! mSymbols and Abbreviations
) N, A% x8 P) C8 B: D$ q' o; LPhysical/ }% O( n) @6 v4 u0 \
1 Introduction 12 x4 h, ]7 w; X
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1! M$ g% c; P3 v8 g" G
1.2 Outline of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
% H/ E' b3 C7 `0 k6 }2 ADCs in Nanometer CMOS Technologies 3+ D; h, p6 R2 I V) T H* [% f: m
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
% Y6 U' L6 i! S* V8 T; w2.2 Scaling-Down of CMOS Technologies . . . . . . . . . . . . . . . . . 3. X" ^$ v0 U+ ^" M# \9 ]: ~; [
2.2.1 Driving Force of the CMOS Scaling-Down . . . . . . . . . . 4
$ l4 Z2 b- s, C1 g/ l8 x2.2.2 Moving into Nanometer CMOS Technologies . . . . . . . . . 51 a! D& R G h: `" k
2.3 Impact of Moving into Nanometer CMOS to Analog Circuits . . . . . 6& D' ~+ N2 |7 w9 s% `+ p4 i
2.3.1 Decreased Supply Voltage . . . . . . . . . . . . . . . . . . . 6
- O" R% l X' `5 `2.3.2 Impact on Transistor Intrinsic Gain . . . . . . . . . . . . . . 7, g: ^. U/ n: ^9 i8 F% H
2.3.3 Impact on Device Matching . . . . . . . . . . . . . . . . . . 92 v7 W+ ~. U4 L4 X7 `7 D) P8 g
2.3.4 Impact on Device Noise . . . . . . . . . . . . . . . . . . . . 10
1 R8 n1 Q$ O! _1 |, Y1 q% L' a2.4 ADCs in Nanometer CMOS . . . . . . . . . . . . . . . . . . . . . . 11
. ~1 z6 N, Y( V6 k: C! H% t' a2.4.1 Decreased Signal Swing . . . . . . . . . . . . . . . . . . . . 133 _' a: r7 C/ @# Y6 E8 Z5 P
2.4.2 Degraded Transistor Characteristics . . . . . . . . . . . . . . 135 X4 v* \. I' }. F- Q
2.4.3 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, @8 f; K! i4 y" `0 b
vii; {" k2 \5 Q$ ~, M
2.4.4 Switch Driving . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 S7 B& V! H7 E1 ~5 M5 ]2.4.5 Improved Device Matching . . . . . . . . . . . . . . . . . . . 17
4 _0 h( `7 c& T. R9 _ hxi$ i* _8 T: o! Y4 Q. d! u O8 O
xiii' h! z8 A% J1 o: P: W) l+ f2 W
xxi
! G( ^! c+ B8 z3 Q9 p- u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
) L% A$ R" H1 T& B9 Q6 P' RDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi$ M7 u; [0 S! q5 z; I& R9 f
CONTENTS9 {+ E0 w8 w7 ~8 D' z3 q
2.4.6 Digital Circuits Advantages . . . . . . . . . . . . . . . . . . 17. X% Q+ [& ~) j9 b8 J; ?
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
' e$ n8 L* X7 Y0 m3 Principle of - ADC 19
, f4 W7 y3 G+ u# s: `3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
) [# S0 Z5 p! M3.2 Basic Analog to Digital Conversion . . . . . . . . . . . . . . . . . . 19. K8 |- r" A$ c2 F
3.3 Oversampling and Noise Shaping . . . . . . . . . . . . . . . . . . . 24
6 F% W1 B# @, ]' {; W' g; @3.3.1 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . 25
. ^, R" I7 L; p% z: [' Q( `+ K3.3.2 Noise Shaping . . . . . . . . . . . . . . . . . . . . . . . . . 26
1 w# e7 x3 c( Q0 V2 F$ M6 z5 M& `3.3.3 - Modulator . . . . . . . . . . . . . . . . . . . . . . . . 29
2 I' X# W0 E+ |( b3.3.4 Performance Metrics for the - ADC . . . . . . . . . . . . 31% o" E7 ?* n7 {$ v. i2 c& E- q
3.4 Traditional - ADC Topology . . . . . . . . . . . . . . . . . . . . 338 {2 ~" W. Z2 K6 I
3.4.1 Single-Loop Single-Bit - Modulators . . . . . . . . . . . 33
2 W! ?+ O: ~$ Y0 G! _& x+ K0 v% V5 v/ S3.4.2 Single-Loop Multibit - Modulators . . . . . . . . . . . . 376 [: G- ?9 z- e* N. C9 f* A
3.4.3 Cascaded - Modulators . . . . . . . . . . . . . . . . . . 390 L! v, O; y7 n# L! }
3.4.4 Performance Comparison of Traditional - Topologies . . 46; {, `/ s: e9 }
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46. z- o/ I( }0 R: D( b2 p4 M% I
4 Low-Power Low-Voltage - ADC Design in Nanometer CMOS: Circuit
) I- Z# _( E9 n' F& I$ Q/ JLevel Approach 475 m z3 P9 i2 n t1 `
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 i5 q" K; d" b' C2 w, `4.2 Low-Voltage Low-Power OTA Design . . . . . . . . . . . . . . . . . 48
5 q- v! P4 E: ]4.2.1 Gain Enhanced Current Mirror OTA Design . . . . . . . . . . 49
2 M" O9 j, A" ~2 N p4.2.2 A Test Gain-Enhanced Current Mirror OTA . . . . . . . . . . 53+ q- G/ b# _% f9 c; ^% a" u6 k
4.2.3 Implementation and Measurement Results . . . . . . . . . . . 545 N/ k2 h% M* a% Y2 Y
4.2.4 Two-Stage OTA Design . . . . . . . . . . . . . . . . . . . . 55
9 r2 V: ^$ l/ n4.3 Low-Voltage Low-Power - ADC Design . . . . . . . . . . . . . . 669 b9 x d) l2 w4 \/ {, w, u; d
4.3.1 Impact of Circuit Nonidealities to - ADC Performance . . 66
2 U4 H2 d" X d. S( Q1 x$ Q- w4.3.2 Modulator Topology Selection . . . . . . . . . . . . . . . . . 67
9 H* h0 ]- \( }( t6 ~4 ~0 h4.3.3 OTA Topology Selection . . . . . . . . . . . . . . . . . . . . 69
U5 [" [+ Y: o4.3.4 Transistor Biasing . . . . . . . . . . . . . . . . . . . . . . . 75
3 _, U; r# C$ D0 ? L$ j% u f% G9 K4.3.5 Scaling of Integrators . . . . . . . . . . . . . . . . . . . . . . 75: U( c8 ~& {* P0 d
4.4 A 1-V 140-μW- Modulator in 90-nm CMOS . . . . . . . . . . . 76. P+ M2 h G3 \( A* `7 T7 e3 O2 d* M: L
4.4.1 Building Block Circuits Design . . . . . . . . . . . . . . . . 76
) f N A- m. j' Q8 Y: Q! K pviii8 T9 C; J$ q4 n# p
4.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 80
0 b" n4 a8 g! h* g6 o4.4.3 Measurement Results . . . . . . . . . . . . . . . . . . . . . . 82
1 T) Z$ Y3 f% [: m% }) V1 V, T4.5 Measurements on PSRR and Low-Frequency Noise Floor . . . . . . . 87
3 M% O1 a1 k6 G+ J- K u" P" l" T4.5.1 Introduction of PSRR . . . . . . . . . . . . . . . . . . . . . . 87, M1 X8 `. l w: i! E9 h+ l
4.5.2 PSRR Measurement Setup . . . . . . . . . . . . . . . . . . . 88& u# @% e6 @% O. v* ]5 {
4.5.3 PSRR Measurement Results . . . . . . . . . . . . . . . . . . 884 a, f2 w9 b, p6 u8 c `
4.5.4 Measurement on Low-Frequency Noise Floor . . . . . . . . . 956 U/ O/ \# \" ~% d. d
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96+ B: {- [- O3 p1 t- F
5 Low-Power Low-Voltage - ADC Design in Nanometer CMOS: System
$ M2 d5 U2 G/ T# m) p5 I( _CONTENTS ix" X# c+ b3 F( R, O
CONTENTS# A/ v8 o! M3 G6 g t* ^
6 Conclusions 149
+ ~: R/ z1 |, }$ ^0 c0 k) JBibliography 151
( ^* `3 X) G0 S4 BIndex 157 |
|