Chip123 科技應用創新平台

 找回密碼
 申請會員

QQ登錄

只需一步,快速開始

Login

用FB帳號登入

搜索
1 2 3 4
查看: 3736|回復: 2
打印 上一主題 下一主題

First Fully CMOS-Integrated 3D Hall Probe[EPFL/2005]

  [複製鏈接]
跳轉到指定樓層
1#
發表於 2007-6-11 22:34:42 | 只看該作者 回帖獎勵 |倒序瀏覽 |閱讀模式
網路上抓的 paper, 希望對大家有幫助!!
) f" ]1 z' X) e" w% n  B5 U4 M( V/ p: O" o: I* x  L# Y
9 O' n6 M" R4 J
ABSTRACT
1 D% g. \+ D' O9 lIn this paper, we present a new planar fluxgate
5 ]5 c) K, N  l3 Imagnetometer structure. The sensor has the  F( S& W5 o+ l5 J
orthogonal fluxgate configuration which makes the& s! U3 \% C8 P) }  \9 u9 w
detection part independent of the excitation& {5 u) v9 @( s5 ^
mechanism. The sensor consists of a ferromagnetic: c$ i" a9 }1 a9 W0 C& I
cylindrical core covering an excitation rod, and
$ P: \9 D. }- F3 [8 Wplanar coils for signal detection. The fabricated
+ C9 I7 c0 V+ N' }4 f% ?9 ksensor has a linear range of ±250 μT, a sensitivity
2 `0 |3 h2 H$ N$ |4 B: U' vof 4.3 mV/mT, and a perming below 400 nT for
) V4 D. M* s' \- Y: t200 mA peak sinusoidal excitation current at: N  _: \0 u# X- O
100 kHz. The effect of demagnetization on the- w3 w9 ?, d* B+ D( I
sensitivity, linear range, and perming for this
# S0 O2 I! B$ o0 S  r  Gstructure is demonstrated by varying the length of
" q7 e5 S6 B. f7 K' Cthe ferromagnetic core.+ f! r; m  @+ m. {- G
遊客,如果您要查看本帖隱藏內容請回復

- q, S  |/ o  u; F8 |( G
9 r9 n9 [1 t, d4 PABSTRACT
/ B: y4 p) f9 M& oIn this paper we report on a 32x32 optical imager
3 Y5 ^8 L" ]* r3 Q/ E. |* W4 v$ bbased on single photon avalanche diodes integrated in
2 r8 Q9 E+ F; }" ?/ c4 A7 \CMOS technology. The maximum measured dynamic& E' b$ q7 `* Q+ B
range is 120dB and the minimum noise equivalent
4 M- |7 B+ m0 X5 z; j4 ]& Jintensity is 1.3x10-3lx. The minimum integration time/ M* u5 e2 f% Z: y8 t! C
per pixel is 4􀁐s. The output of each pixel is digital,
4 r0 f/ w3 n1 @2 tthereby requiring no complex read-out circuitry, no5 r$ V: y+ i1 o( O; \5 b' a
amplification, no sample & hold, and no ADC.
# Z# L8 h1 i0 r6 r
2 U7 r7 w, _2 e5 U! H& n7 C
遊客,如果您要查看本帖隱藏內容請回復
* v) R8 M  ^- U0 ?5 F2 z, ?4 U+ G( [

: h) ~% _( ]* c/ c+ c' |% KABSTRACT3 i! m/ m3 Q4 {; R' Q$ y6 h# i
We present the first fully CMOS-integrated 3D# e/ j3 u! v: ?; [+ Q+ u2 Q! y  Y% C
Hall probe. The microsystem is developed for precise
( P, J6 |+ T) bmagnetic field measurements in the range from
' y% p+ m1 _/ ?militeslas up to tens of tesla in the frequency range
! T( [# h# Z( d" mfrom DC to 30 kHz and a spatial resolution of about1 [8 F; y$ B1 U% [7 A, b, i8 n
150 μm. Microsystem is realized in a conventional) u5 w% j( ]' ~
CMOS process without any additional processing step: r* N7 ^5 ~' v7 J9 h5 M  ]
and can be manufactured at very low cost. With the8 G$ u4 A% }$ r; b4 ^
electronics circuit applying the so-called spinningcurrent
: J* x8 N. B4 J. m2 W9 ktechnique to the Hall sensor block, we obtain
, t9 R; G$ L; q7 `  mlow noise (a resolution better than 100 μT) and low
1 e: }6 e$ H3 p/ W4 l) q) Z, lcross talk between the channels (less than 0.2%, X# c' L+ O" S4 F' M! H1 K
between the channels up to 2 T). The single chip
- a/ F5 F5 s$ F$ y& Y# g9 @9 D5 R: fconfiguration insures a precision of the orthogonality
  j( h& ^; Z3 `: Ybetween the measurement axes better than 0.5°. A
+ q* y2 g* _, G4 h+ Stemperature sensor based on band-gap cell is integrated# b  A& G; T! U4 t. @
directly on the chip, which allows a good temperature# {1 e+ `. Z% r, R
drift compensation of the system.
- E% Q& g1 V! p, f6 U
+ d1 @; E! F2 T+ X6 l7 l5 [
遊客,如果您要查看本帖隱藏內容請回復

6 ?- E! m0 w* Y: e2 B7 \9 B
4 x( k3 Q+ }/ dMagnetic sensors having submicrometer spatial resolution) p6 N9 I4 h8 E* Q
are key elements in several fundamental studies as well
6 @" K3 y7 N2 E% Pas industrial applications.1–4 Hall effect devices are emerging8 B3 j; j9 ~4 J" B) ], F6 m6 W
as one of the most suitable solutions.4–9 The ordinary Hall. I0 {0 J0 c9 w: k9 H3 k; g9 @
effect is due to the Lorentz force acting on charge carriers in/ ]6 d+ i% t3 P2 g7 `$ z* S2 ]
metals, semi-metals, and semiconductors.5 Magnetic materials
4 E+ B. x& h2 r# ~" ]# h" oshow additional “Hall phenomena” which are, generally
3 F* k9 y% n: k7 fspeaking, generated by spin–orbit interactions: the so-called
8 y" g: m8 u" m" O( s( ]extraordinary10–16 and planar Hall effects.17–
- t5 y4 G9 w7 N# @% M* e8 ?/ @+ ]9 O! H" d4 k% {' D5 X: B1 E4 X
遊客,如果您要查看本帖隱藏內容請回復
+ W% f: h3 _  _% D; z

# ?" h% D+ v: v% I  \We developed a LODESR spectrometer based on a miniaturized Hall sensor and a
8 d. A( C. a8 O  f, a3 Gresonant cavity tuned at 14 GHz. We used InSb cross-shaped Hall devices (designed and
" o+ F$ `8 \5 a, Z+ j4 [3 r7 tfabricated in collaboration with Asahi Corporation) with active areas down to (7 μm)2. The% k" j5 ?0 L5 @
Hall sensor is inserted in the cavity within a hole.$ ]/ I$ E4 l) `& j: i
Coupling between the microwave power (guided wave) and the cavity is achieved by using
1 G6 A2 R+ C; S4 ^6 l$ H. ]8 pan iris.We adjusted the iris diameter and the cavity dimension such that the resonant
6 r- O" y! `# nfrequency is about 14 GHz. Our final design has a 4.36 mm diameter aperture. The Hall  K, z, ]! m5 |2 a
device does not significantly change the Q-factor and the resonance frequency of the cavity.* W2 l1 k2 {7 `8 f
The quality factor Q of the cavity is about 104.
- {% `; r& R6 l9 k% w
遊客,如果您要查看本帖隱藏內容請回復

$ M+ G$ \' N& H; V5 l
4 Z6 m9 V" A- iAbstract—In this paper, we present a low-power, two-axis fluxgate
  k8 Z5 V1 ^$ }8 [1 I" }: x, kmagnetometer. The planar sensor is integrated in a standard
9 }3 ^+ ^/ L- K% \0 |' w8 ~: q0 UCMOS process, which provides metal layers for the coils and
) d; f/ I. {) ]1 \  c$ Uelectronics for the signal extraction and processing. The ferromagnetic
; F0 _, P3 H" P8 R* _core is placed diagonally above the four excitation coils% K8 p" s' J9 o# U, z: f5 j4 t
by a compatible photolithographic post process, performed on- t6 y" N# h: E* i8 T, ^6 Q
a whole wafer. The sensor works using the single-core principle,
8 m5 `% X% g% x6 O& ?4 Fwith a modulation technique to lower the noise and the offset
3 B! K4 K4 n0 S3 W& M6 K/ T# Fat the output. In contrast to traditional fluxgate approaches, the
! w- a1 k" O4 N3 `sensor features a high degree of integration and minimal power( }4 V2 w- x# \6 C7 u9 l& {  _$ l
consumption at 2.5 V of supply voltage that makes it suitable4 M0 f2 h, v$ ~$ f2 |. J
for portable applications. A novel digital feedback principle is5 g/ g0 S) \* K1 K  P
integrated to linearize the sensor characteristics and to extend the3 }5 g, u. {# S* e( `& ^
linear working range.- R' [4 J. F" r
遊客,如果您要查看本帖隱藏內容請回復
( z6 L9 M: G, i$ I! }" W5 H
2 J) w: a# @3 K/ y

$ F  T8 U% i% y, ?8 n: pA microscopic four-point probe 4PP for resistivity measurements on thin films was designed and/ k! a; ?9 k& k: X
fabricated using the negative photoresist SU-8 as base material. The device consists of four
2 ]1 c" n6 N0 p* _microscopic cantilevers, each of them supporting a probe tip at the extremity. The high flexibility of' |. H( r+ r9 k, R
SU-8 ensures a stable electrical point contact between samples and probe tip with all four electrodes
5 j4 q: G: N; r1 Q# H2 j: h( yeven on rough surfaces. With the presented surface micromachining process, 4PPs with a
* C% y: I- @7 D, d1 ~probe-to-probe spacing of 10–20 m were fabricated. Resistivity measurements on thin Au, Al, and5 a' Q4 a9 Q/ `& M/ f( `( {
Pt films were performed successfully. The measured sheet resistances differ by less than 5% from( X7 N$ a& ~1 V0 H4 X# _
those obtained by a commercial macroscopic resistivity meter. Due to the low contact forces+ i) Q2 U+ n. H: R  O' D* b
Fcont10−4 N, the 4PP is suitable to be applied also to fragile materials such as conducting  {4 q2 U) q" E! S. T! B# `: ?
polymers. Here the authors demonstrate the possibility of performing resistivity measurements on; @' S, C1 u- N9 |
100-nm-thick pentacene C22H14 films with a sheet resistance Rs106 /. © 2005 American
2 @+ N  n: p1 {. u% K7 O5 _Institute of Physics.
% h8 s. [' O9 B7 r# J
遊客,如果您要查看本帖隱藏內容請回復

1 I6 p: E8 Z) ~; F. Y, ]8 t; y( U+ v# b; W
& T3 h# V) R" B$ D, U. ^

3 k" c% A7 P. B' lWe present here a novel concept to perform NMR spectroscopy: Confining the sample within, t" M5 S" v: d2 q; P# e6 l
artificial vesicles, which are structured on the surface of a microfabricated planar detection
! w2 x+ ?, e$ A) b: n' w' v, Y5 ]coil. Different vesicle patterns show the improvement of the NMR performance, when
" z% H" }6 @1 ^5 `' j* k# m* sstructuring the sample in areas of homogenous RF field.7 N0 C$ X3 Y4 H$ M$ @# m3 {
遊客,如果您要查看本帖隱藏內容請回復
: q' h, u) v6 N) _: F# T! Y7 `
# _+ X0 F9 S0 }* m% [
2 e* U7 o$ y% k% n; R- f/ Z
We developed an inductive system to measure the surface concentration of superparamagnetic: d$ @$ m3 c$ y/ j2 T# o
microbeads resulting from a bioassay. Our tabletop apparatus, tested with Dynal MyOne™
# v% l' [4 _9 w# a7 smicrobeads, has a detection limit of about 1000 beads/Hz1/2 i.e., about 21010 Bohr magnetons.8 `5 Z: a% H' @6 W
The system can measure surface concentrations from 0.01% to 100% over the 6 mm2 sensitive area5 b* m1 }+ U- w! ~  t' E  g
with an integration time of 1 s. © 2005 American Institute of Physics.& m3 G% M; _: {% G; Z+ ~  F3 M
遊客,如果您要查看本帖隱藏內容請回復
- s" K3 d! C. x$ y

. u$ E6 |* h. R  e4 k, y" P, }[ 本帖最後由 mt7344 於 2007-6-11 10:47 PM 編輯 ]

本帖子中包含更多資源

您需要 登錄 才可以下載或查看,沒有帳號?申請會員

x

評分

參與人數 1Chipcoin +5 +3 收起 理由
ianme + 5 + 3 熱心分享,再接再厲!

查看全部評分

分享到:  QQ好友和群QQ好友和群 QQ空間QQ空間 騰訊微博騰訊微博 騰訊朋友騰訊朋友
收藏收藏 分享分享 頂2 踩 分享分享
2#
發表於 2008-4-5 22:07:06 | 只看該作者
推推,我想看paper^^感謝大大唷~~
3#
發表於 2015-6-6 07:32:26 | 只看該作者
探討『磁力』相關的論文嗎?值得一看,甘溫啦。
您需要登錄後才可以回帖 登錄 | 申請會員

本版積分規則

首頁|手機版|Chip123 科技應用創新平台 |新契機國際商機整合股份有限公司

GMT+8, 2024-9-20 06:38 AM , Processed in 0.179010 second(s), 21 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回復 返回頂部 返回列表