Chip123 科技應用創新平台

 找回密碼
 申請會員

QQ登錄

只需一步,快速開始

Login

用FB帳號登入

搜索
1 2 3 4
查看: 3734|回復: 2
打印 上一主題 下一主題

First Fully CMOS-Integrated 3D Hall Probe[EPFL/2005]

  [複製鏈接]
跳轉到指定樓層
1#
發表於 2007-6-11 22:34:42 | 只看該作者 回帖獎勵 |正序瀏覽 |閱讀模式
網路上抓的 paper, 希望對大家有幫助!!
0 L! E" _1 o% b9 F' P$ `0 Y5 l" i" ]& T# \

& G6 G9 y9 Q* KABSTRACT5 J' K8 X+ I( T5 O; M+ n) t* Z8 ^2 \0 B
In this paper, we present a new planar fluxgate! b- V/ X1 y2 ]4 S# O2 u5 ^  K& s( |
magnetometer structure. The sensor has the
# w; p* G; x; O9 m7 |orthogonal fluxgate configuration which makes the# i5 O- _* Y- C
detection part independent of the excitation) q0 ]% k5 h# ^' }3 C& j! ]
mechanism. The sensor consists of a ferromagnetic, W& a$ I5 g+ z! d
cylindrical core covering an excitation rod, and
) a0 _4 B7 s4 ~. P& [planar coils for signal detection. The fabricated7 _/ L! u. `! I' b6 @
sensor has a linear range of ±250 μT, a sensitivity
( h+ J: I4 N. D" w! q$ {of 4.3 mV/mT, and a perming below 400 nT for" f" {! e3 T; S5 \
200 mA peak sinusoidal excitation current at5 l' W! T7 e& l/ M3 b
100 kHz. The effect of demagnetization on the
+ ^, H% m) }. r; |7 Bsensitivity, linear range, and perming for this
) n9 t( i8 H" {& Ystructure is demonstrated by varying the length of, |9 J9 _2 [6 \* x( v% x
the ferromagnetic core.$ i# D" @! c5 I6 \$ x7 j" k
遊客,如果您要查看本帖隱藏內容請回復

% R7 |0 o9 V$ T$ f# u  p/ V6 \3 r4 s* }# v* p, B/ A4 ]  d
ABSTRACT- s4 M. |5 }5 s; f  W7 a$ m: y5 u
In this paper we report on a 32x32 optical imager
8 q$ P7 _: j. \! z. G& {& Sbased on single photon avalanche diodes integrated in
5 k4 ]' ]7 H9 B0 q% gCMOS technology. The maximum measured dynamic
% e1 z  V$ c$ i# E0 n) orange is 120dB and the minimum noise equivalent9 B, V5 x  b, a$ v: R
intensity is 1.3x10-3lx. The minimum integration time/ ]9 u. W6 L/ i4 X+ r! Q
per pixel is 4􀁐s. The output of each pixel is digital,
9 s, M6 q3 p( j5 Q! ^thereby requiring no complex read-out circuitry, no: z, M4 r2 O$ {2 p. o; c/ Y, I8 W
amplification, no sample & hold, and no ADC.
9 H9 K3 N, g' C. P' p) {, p
+ p+ S8 f' ?3 D/ W* ?: p
遊客,如果您要查看本帖隱藏內容請回復
: c% @2 _4 R; g( {

7 m& R4 s; b  N1 G: tABSTRACT3 H  x+ Y" M& `, I. y1 u- i
We present the first fully CMOS-integrated 3D& ~& W( }" U" p' |
Hall probe. The microsystem is developed for precise9 A9 G! N9 E1 w+ M
magnetic field measurements in the range from
+ K9 o2 Q  e# v2 m# t- ^( s" `militeslas up to tens of tesla in the frequency range" S) w7 H1 B3 }
from DC to 30 kHz and a spatial resolution of about, W. l* H0 q6 y
150 μm. Microsystem is realized in a conventional
8 h, @+ x$ T) V/ q% c6 xCMOS process without any additional processing step
* g. F6 y) K  Y+ D6 ?" d) ?" qand can be manufactured at very low cost. With the
6 u2 O& F/ Y4 m- Q+ B4 p& Ielectronics circuit applying the so-called spinningcurrent! G9 Y# k. E+ a: Z" e% u( P  E& H7 v
technique to the Hall sensor block, we obtain. D- I: L3 H4 Z& s$ c
low noise (a resolution better than 100 μT) and low
2 p/ m. C5 t6 x% N; ecross talk between the channels (less than 0.2%
) O8 h- l; b  @" r3 q1 F) Pbetween the channels up to 2 T). The single chip& j5 ~3 D/ S7 w) q3 \
configuration insures a precision of the orthogonality+ q, _+ F/ v- s' h9 F
between the measurement axes better than 0.5°. A( J) ^4 x8 V4 t- [& P) F. v
temperature sensor based on band-gap cell is integrated
+ b8 T) C5 W- y. H- T: y; L- z' I  gdirectly on the chip, which allows a good temperature
  a$ p, `6 T& t: Odrift compensation of the system.
! u9 E- A7 \8 W6 r) \/ x* `! r& ]4 V' @2 c: T/ S  w
遊客,如果您要查看本帖隱藏內容請回復
% Y: }6 W; d& L% h# i9 j
; I2 i* Y+ E% @# a: ]6 N7 j  o
Magnetic sensors having submicrometer spatial resolution5 f+ Z( y. s' ^+ M8 O
are key elements in several fundamental studies as well) P8 ~; M  J7 {2 _
as industrial applications.1–4 Hall effect devices are emerging% _3 I4 V2 f1 ^. x' F- U1 v
as one of the most suitable solutions.4–9 The ordinary Hall) X+ o3 `$ I' u8 d9 F) }
effect is due to the Lorentz force acting on charge carriers in
4 T% i- B" Z5 z" [metals, semi-metals, and semiconductors.5 Magnetic materials
* `# [2 ]% D5 O( r, ishow additional “Hall phenomena” which are, generally
5 K9 j: A  P6 y$ Q6 D9 k0 X% X4 Z! jspeaking, generated by spin–orbit interactions: the so-called- w' M+ J% r- |0 r( P( t: D
extraordinary10–16 and planar Hall effects.17–: X/ l5 y8 G) @/ x( N( P# V) I

* t  K$ Z: m2 m3 {1 ~+ g& O
遊客,如果您要查看本帖隱藏內容請回復

) N. |& }* L9 b0 Z2 H8 l2 q! V, b& ^0 @6 @$ z* P. I
We developed a LODESR spectrometer based on a miniaturized Hall sensor and a
- n* K5 \- R( D2 yresonant cavity tuned at 14 GHz. We used InSb cross-shaped Hall devices (designed and, @; v1 n1 P5 y0 p& M
fabricated in collaboration with Asahi Corporation) with active areas down to (7 μm)2. The8 B, Q: m) n& q' [! g* _
Hall sensor is inserted in the cavity within a hole.
( {: {( [/ H& HCoupling between the microwave power (guided wave) and the cavity is achieved by using
1 `5 l6 j8 Q+ kan iris.We adjusted the iris diameter and the cavity dimension such that the resonant
% F0 G# A6 m) j/ B3 Y; J0 u, ufrequency is about 14 GHz. Our final design has a 4.36 mm diameter aperture. The Hall7 g& j; W8 S0 l: y- t
device does not significantly change the Q-factor and the resonance frequency of the cavity.3 \; @8 S  w- T
The quality factor Q of the cavity is about 104.
  n; r% W9 O+ a% {
遊客,如果您要查看本帖隱藏內容請回復
% H0 w, J1 m" J  W" b- q6 x0 M

- a6 k/ r" g- [; ZAbstract—In this paper, we present a low-power, two-axis fluxgate) O2 c1 h$ L/ p+ J. p- ]+ r
magnetometer. The planar sensor is integrated in a standard1 @) b8 F9 _1 U4 H- V( M) d
CMOS process, which provides metal layers for the coils and1 o/ L0 c, k1 K  r% k( h6 L+ ]
electronics for the signal extraction and processing. The ferromagnetic  j( x3 e# g) v# J: O7 P9 O
core is placed diagonally above the four excitation coils
2 L* X" @, `5 ~- Sby a compatible photolithographic post process, performed on
0 P/ Z( _( L6 n# d3 K6 y4 h, q* ^a whole wafer. The sensor works using the single-core principle,. P# p+ t4 x0 y% r
with a modulation technique to lower the noise and the offset
# W% B2 t# B$ A; d5 [& @at the output. In contrast to traditional fluxgate approaches, the& j; m0 r1 f7 W: m. q& I* I
sensor features a high degree of integration and minimal power
3 V* W5 ]: @1 D0 rconsumption at 2.5 V of supply voltage that makes it suitable
! e, T& w1 P3 E# v. Bfor portable applications. A novel digital feedback principle is- d  h4 T4 s- m$ j
integrated to linearize the sensor characteristics and to extend the/ d' B9 C8 E4 u+ P* u
linear working range.; R" _- _+ z! i/ m8 M
遊客,如果您要查看本帖隱藏內容請回復
) ]) d' h& Y8 c% b# p8 {( c" ^
5 G9 y! ^4 q8 \0 w9 a: t! H8 V
  J4 e& S4 O% ]' e7 h: \
A microscopic four-point probe 4PP for resistivity measurements on thin films was designed and/ }7 d0 B$ [; S
fabricated using the negative photoresist SU-8 as base material. The device consists of four
0 A1 h0 J+ U4 F& L6 ?1 }microscopic cantilevers, each of them supporting a probe tip at the extremity. The high flexibility of
$ i  B6 z) B7 j: S+ J9 f% xSU-8 ensures a stable electrical point contact between samples and probe tip with all four electrodes
2 h5 W! ~/ W6 I1 seven on rough surfaces. With the presented surface micromachining process, 4PPs with a: {4 g+ r5 D; w# D* s# w8 e! R
probe-to-probe spacing of 10–20 m were fabricated. Resistivity measurements on thin Au, Al, and
6 ]7 @" C$ _7 i. P0 fPt films were performed successfully. The measured sheet resistances differ by less than 5% from
! y5 R! f! h0 u2 k4 ethose obtained by a commercial macroscopic resistivity meter. Due to the low contact forces
  E- |3 N  s+ |$ f7 _" w/ T( G" A5 EFcont10−4 N, the 4PP is suitable to be applied also to fragile materials such as conducting' b- u* F! `* |2 T
polymers. Here the authors demonstrate the possibility of performing resistivity measurements on
' O. J) q$ v3 u$ F3 [; n6 M" o& g100-nm-thick pentacene C22H14 films with a sheet resistance Rs106 /. © 2005 American
* u* }9 }; f. @% `5 f6 b$ NInstitute of Physics., R' j. ~! y# n( `( W7 \2 z9 V% v
遊客,如果您要查看本帖隱藏內容請回復

- f0 {/ e  @# x* S7 \: N8 J
0 F( S9 B4 k$ k' l$ q9 X' [$ s/ V/ u: \& q  M
% T0 U4 t$ U9 j" z* U4 m
We present here a novel concept to perform NMR spectroscopy: Confining the sample within
* q/ B. E, z( d3 `artificial vesicles, which are structured on the surface of a microfabricated planar detection9 @. x0 I$ a' N. O2 r
coil. Different vesicle patterns show the improvement of the NMR performance, when# f! m$ j8 k! _0 W: |3 ~$ K: a
structuring the sample in areas of homogenous RF field.7 G9 u& P. l" V+ R
遊客,如果您要查看本帖隱藏內容請回復
( Z% D! u" u) N$ V# h6 q

$ T: }5 F# [* G* F& t
* c, G: M' n5 U, P$ X3 ZWe developed an inductive system to measure the surface concentration of superparamagnetic/ B6 G) E# J% s+ x- ?! l: q' r1 s$ L$ S
microbeads resulting from a bioassay. Our tabletop apparatus, tested with Dynal MyOne™- A" o; G7 N) |2 \1 p9 h
microbeads, has a detection limit of about 1000 beads/Hz1/2 i.e., about 21010 Bohr magnetons.
8 s% c1 b3 ?6 vThe system can measure surface concentrations from 0.01% to 100% over the 6 mm2 sensitive area
; D7 W  {+ t% ^5 x5 M9 U, l( u  cwith an integration time of 1 s. © 2005 American Institute of Physics.% K$ @4 Q4 S  |- P
遊客,如果您要查看本帖隱藏內容請回復

4 u: q$ I2 k7 _' Q* z
  l: ^; Q3 O- M& y8 `[ 本帖最後由 mt7344 於 2007-6-11 10:47 PM 編輯 ]

本帖子中包含更多資源

您需要 登錄 才可以下載或查看,沒有帳號?申請會員

x

評分

參與人數 1Chipcoin +5 +3 收起 理由
ianme + 5 + 3 熱心分享,再接再厲!

查看全部評分

分享到:  QQ好友和群QQ好友和群 QQ空間QQ空間 騰訊微博騰訊微博 騰訊朋友騰訊朋友
收藏收藏 分享分享 頂2 踩 分享分享
3#
發表於 2015-6-6 07:32:26 | 只看該作者
探討『磁力』相關的論文嗎?值得一看,甘溫啦。
2#
發表於 2008-4-5 22:07:06 | 只看該作者
推推,我想看paper^^感謝大大唷~~
您需要登錄後才可以回帖 登錄 | 申請會員

本版積分規則

首頁|手機版|Chip123 科技應用創新平台 |新契機國際商機整合股份有限公司

GMT+8, 2024-9-20 01:55 AM , Processed in 0.172010 second(s), 19 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回復 返回頂部 返回列表