|
6#

樓主 |
發表於 2010-10-27 17:23:41
|
只看該作者
4.Are there any special thermal management concerns when using Stacked Silicon Interconnect technology? 4 [6 E7 |1 [5 D! N+ ^
No. Because the interposer is passive, it does not dissipate any heat beyond what is consumed by the FPGA die. Stacked Silicon Interconnect technology FPGA devices are, therefore, comparable to a single die if such a large monolithic device could be manufactured. # @+ b: F: }% w: }: q2 N2 R
* E$ z. g" S4 ]6 u
5.Is Stacked Silicon Interconnect technology reliable?: w2 u4 g6 @: o
Yes, in general, internal stress of Stacked Silicon Interconnect technology package architecture is lower than the equivalent size of monolithic flip-chip BGA package since the thin silicon interposer effectively decouples any internal stress build up. Therefore, thermo-mechanical performance improves by reducing maximum plastic strain in the package.
2 L8 x8 [$ H( ]+ Z
+ ~; G1 X$ U; G" u z7 h7 z6.Who is expected to use the FPGAs made with the Stacked Silicon Interconnect technology?3 A! G3 T$ s7 p
Customers in Communications, Medical, Test and Measurement, Aerospace and Defense, High Performance Computing, and ASIC prototyping (emulation) who are looking to implement their next-generation, most demanding applications with FPGAs are likely to benefit from the earlier availability of the most resource-rich FPGA devices. By not having to drive off-chip through I/Os (parallel or serial), across PCB traces to adjacent FPGAs, designers that have previously used multiple FPGAs in their system will appreciate the high-bandwidth, low-latency, power-efficient interconnect between the FPGA die. |
|